The Stein–Weiss theorem for the ergodic Hilbert transform
نویسندگان
چکیده
منابع مشابه
Good modulating sequences for the ergodic Hilbert transform
This article investigates classes of bounded sequences of complex numbers that are universally good for the ergodic Hilbert transform in Lp-spaces, 2 ≤ p ≤ ∞. The class of bounded Besicovitch sequences satisfying a rate condition is among such sequence classes.
متن کاملPointwise Convergence of the Ergodic Bilinear Hilbert Transform
Let X = (X,Σ,m, τ) be a dynamical system. We prove that the bilinear series ∑ ′N n=−N f(τnx)g(τ−nx) n converges almost everywhere for each f, g ∈ L(X). We also give a proof along the same lines of Bourgain’s analog result for averages.
متن کاملGeneralization of Titchmarsh's Theorem for the Dunkl Transform
Using a generalized spherical mean operator, we obtain a generalization of Titchmarsh's theorem for the Dunkl transform for functions satisfying the ('; p)-Dunkl Lipschitz condition in the space Lp(Rd;wl(x)dx), 1 < p 6 2, where wl is a weight function invariant under the action of an associated re ection group.
متن کاملInversion Theorem for Bilinear Hilbert Transform
where f ∈ L2(R) and g ∈ L∞(R), respectively f ∈ Lp1(R) and g ∈ Lp2(R), 1 < p1, p2 <∞. Their main result is the affirmative answer on the Calderon conjecture, first for p1 = 2, p2 = ∞ ([5]), then for p1, p2 ∈ (1,∞). Let 2/3 < p = p1p2 p1+p2 or p1 = 2, p2 = ∞ and p = 2. Then their main result is ||Hα(f, a)||Lp ≤ C||f ||Lp1 ||a||Lp2 , f ∈ L p1, a ∈ Lp2, where C > 0 depends on α, p1, p2. We refer t...
متن کاملGENERALIZATION OF TITCHMARSH'S THEOREM FOR THE GENERALIZED FOURIER-BESSEL TRANSFORM
In this paper, using a generalized translation operator, we prove theestimates for the generalized Fourier-Bessel transform in the space L2 on certainclasses of functions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 2004
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm165-1-5